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The prediction of drifting object motion due to currents in an irregular body is a complex 
problem with a wide range of practical applications. Simple numerical methods for inter- 
polating current velocity fields have spatial interpolation and time integration errors that 
result in misleading solutions. The method described in this paper minimizes these problems, 
yielding much more accurate predictions. This method can be easily implemented in other 
finite-difference models or finite-element models. q 1987 Academic Press. hc 

INTRODUCTION 

An important practical application of lake and ocean circulation models is the 
prediction of drifting object trajectories for search and rescue operations or oil and 
chemical spill cleanup. This type of forecasting involves four basic steps. First, wind 
stress is determined from either predicted or observed winds and the air-water tem- 
perature difference. Second, currents are calculated from the wind stress, the initial 
and boundary conditions, and the density field. Third, currents and winds are used 
to compute trajectories. Finally, when forecasting the movement of oil or chemicals, 
the effects of physical or chemical transformations must be estimated. This paper 
will examine errors introduced in the third of these four steps, the computation of 
trajectories in a closed basin and the methods developed here to avoid those errors. 

The numerical method described in this paper is used to calculate the current- 
induced portion of the particle trajectories in lakes, but it would be very simple to 
implement in other finite-difference models or in finite-element models. It is far 
more accurate in time and space than simple first-order methods. The spatial inter- 
polation of currents used in this second-order method allows particles to move 
along a jagged finite difference coast without running into the boundary and 
becoming art&ally “beached” or trapped in grid corners. 

There are several operational spill models available [ 1,461. Of necessity, com- 

* GLERL Contribution No. 442. 
+ Current address: Environmental Research Institute of Michigan, P.O. Box 8618, Ann Arbor, Mich. 

48107. 

272 
CO21-9991/87 $3.00 

Copyrght 0 1987 by Academic Press, Inc 
All rights of reproduction in any form reserved. 



ACCURACYOFTRAJECTORYCALCULATION 273 

FIG. 1. Path of a satellite-tracked drifter in Lake Michigan from 15 September to 16 October 1982. 
The 50-m isobaths are marked. The inset shows an enlarged view of the drifter track following the coast. 
The positions are marked at 12 h intervals. 

promises are made between physical or numerical accuracy and ease of operation. 
The intent of this study was to improve the numerical methods used in the Great 
Lakes spill model developed by Pickett [ 1 ] and modified by Schwab et al. [4]. 
This model is used by the National Weather Service and the Coast Guard to 
predict movement of oil or chemical spills to facilitate their containment and 
cleanup. In parallel to this theoretical work, satellite-tracked drifter buoys are being 
used to gather data for model verification [2]. Figure 1 shows a track of one of 
these drifters in Lake Michigan. The track follows the irregular shoreline quite 
closely for long periods. Moreover, some of the highest speeds are observed when 
the drifters are in the coastal current, often within 10 km of shore. This type of path 
is very difficult to model numerically. Earlier attempts have not been successful in 
keeping the particle trajectories from crossing the shoreline or from becoming trap- 
ped in the grid corners. The finite-difference method presented here minimizes these 
kinds of errors. 

A METHOD FOR CALCULATING TRAJECTORIES 

In this model, particle trajectories are calculated from a combination of current 
and wind using two assumptions: 

(1) When there is no wind, a particle cannot cross the shore boundary. 
(2) When particles are driven ashore by the wind, they stay there. 
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The reasoning behind these assumptions is that, in the absence of flooding, the 
currents are parallel to shore; thus, only wind can cause particles to beach. In prac- 
tice, surface waves can also carry particles towards a beach, but, in the Great 
Lakes, these waves are strongly correlated with the wind. The exact magnitude of 
the wind-driven flow depends on the nature of the particle. For example, a life 
jacket would have a large wind exposure but a body would have a small one. 

The equations that describe particle motion are 

$ = 4% y, 1) + au,(x, y, f) 

4 ; = 4x, y, t) + av,(x, Y, f), 

(1) 

(2) 

where dx/dt and dy/dt are the particle velocity components, u and v are the x and y 
components of the current, a is the wind factor (the ratio of the wind-driven par- 
ticle speed to the wind speed), and U, and v, are the x- and y-components of the 
wind. The currents used here were calculated from an incompressible model [4, 71. 
They are obtained by dividing the mass transport components, U and V of Fig. 2, 
by the water depth. 

The variables are defined at the points shown in Fig. 2 of each grid box in the 
bathymetric grid. The x-component of transport is defined at the center of the right 

FIG. 2. Pictorial representation of the grid box and lake outlines for each of three grid sizes tested: 
10, 5, and 2.5 km. Water depth (D) is defined at the center of the grid box, the x-component of transport 
(U) at the center of the sides, and the y-component of transport (V) at the center of the top. Stream- 
function (+) is defined at the corners. 
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side of the grid box and the y-component at the center of the top. Water depth is 
interpolated to the stream function points at the corners. To ensure that particles 
can be driven across the shore boundary only by wind, never by current alone, 
wind- and current-driven motion are calculated separately at each time step. For 
the operational lake trajectory model, the time step is chosen internally by the 
program to ensure that no particle can travel more than one-eighth the distance 
across a grid box in one time step. The value of one-eighth is arbitrary, but is small 
enough so that the trajectories do not significantly depend on the time step. The 
exact formulation of the time step for other applications would depend on the 
accuracy required and on other factors. 

During the wind step, the following first-order difference equations govern par- 
ticle motion: 

Xn+l-Xn=At~a~u,(x”, y”) (3) 

Y n+‘-yn=At.a~u,(x”, y”). (4) 

This straightforward method is adequate since the wind has a simple spatial struc- 
ture. 

Predicting motion due to lake currents is more complex for several reasons. First, 
the simplest methods for interpolating the velocity field give rise to particle trajec- 
tories that either cross the shore boundary or trap particles that are near the bon- 
dary in the grid corners. Second, the (forward) Euler first-order derivatives have 
persistent errors that cause the particles to drift toward the boundary. The method 
developed in this paper for interpolating the velocity components minimizes the 
first problem, and a second-order time stepping procedure solves the second. 

Spatially, the currents, defined numerically at the center of the sides of the grid 
boxes, are interpolated to the corners of the grid boxes ($ in Fig. 2). This process is 
done carefully to ensure that the boundary values are extrapolated from the 
interior. Referring to Fig. 2, every corner point has north-south components of 
velocity on its right and left, and east-west components above and below it. Away 
from the shore boundary, interpolated values of the velocity components are for- 
med by averaging these components. However, if one of these components is a zero 
shore value, the nearest interior value of that component is used instead. This 
prevents artificial “dead” zones from developing in the grid corners. This step may 
not be appropriate in a model that used a no-slip boundary condition. Once the 
velocity components are interpolated to the corners of all grid boxes, the new par- 
ticle positions are predicted from 

X?I+l 
-Xx” 

At 
-X”)+E(y.+Lyy (5) 

Y n+l 
- Y” 

At 
=u(x”, yn)+fg(xn+’ -X”)+lao(yn+Ly.). 

2 ay 
(6) 
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These formulas were derived from Taylor series expansion about the old particle 
position. The values of u, u, and their derivatives are computed by bilinear inter- 
polation from the four corner points of the grid square in which the particle begins 
the time step. Once this has been done, the pair of simultaneous linear equations, 
(5) and (6), can be solved directly, yielding the new particle positions. 

ACCURACY OF TRAJECTORY CALCULATIONS 

The accuracy of trajectory calculations can be described by comparing them with 
trajectories resulting from solid rotation motion and wind-driven motion. This will 
be done here in three stages. First, the errors in the trajectories of particles in 
unbounded circular flows will be calculated. Second, the effects of shorelines on the 
trajectories will be evaluated numerically. Finally, calculated trajectories of particles 
in a complex, time-dependent wind-driven flow with various grid resolutions will be 
presented. The case of unbounded flow can be broken down further into solid 
rotation flow and rotational flow with variable vorticity. The solid rotation case is 
used to evaluate time differencing errors; the variable vorticity case is used to study 
the spatial interpolation errors. 

The two velocity components in an unbounded solid rotation flow are 

l.l= -0.y (7) 

u= +Q.x, (8) 

where Q is the angular rotation rate. Since these velocity components are linear 
functions of the spatial coordinates, bilinear interpolation on a finite-difference grid 
gives the exact solution for u, u, and their spatial derivatives. Thus, the accuracy 
will depend on the time step, At, but not on the grid size, As. Only two simple time 
differencing methods will be discussed here; the extension to other methods, 
however, is straightforward. 

Using the complex representation of the position 

z=x+iy (i=J- 1) 

the first- (forward Euler) and second-order (trapezoidal) methods are 

(9) 

1st: z 
n+l -Z” 

= iQZ” 
At (10) 

ntl 

2nd: 
Z -Z” iQ 

At 
=y(z”+‘+Z”). (11) 
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The error, E, is defined as the difference between the starting position and the 
position one revolution later divided by the initial radius, 

E= IZN--01 
lZOl ’ 

(12) 

where N= 27c/S2 At. N is the number of time steps required for the particle to com- 
plete the circle. Using the above formulas for the first- and second-order schemes 
yields 

E, = I(1 +X2 At)‘“- 11 (13) 

(14) 

These formulas are plotted in Fig. 3. The maximum error for the second-order 
scheme, for N-C 2, is about twice the radius. The reason for this is that, for the 
second-order scheme the radius is constant-the error is only in the phase. The 
farthest the particle can get from its initial position is on the opposite side of the 
circle. However, the first-order scheme gives an outward drift as well as a phase 
error; for small values of N (large time steps) the error can be nearly 14 radii 
(1400%). For the error to be less than one radius after one revolution using the 
first-order scheme requires about 30 time steps. The second-order scheme makes an 
error of less than 10% at about 15 time steps per revolution; clearly the slight 
increase in complexity is worthwhile. 

As noted above, for solid rotation in an unbounded flow, the error does not 
depend on the spatial grid size. Thus, to evaluate the error as a function of As, one 

1500 r 

FIG. 3. Percentage error in the calculation of one revolution of a particle in a solid rotation flow for 
first- and second-order time difierence schemes. Since, for solid rotation, there is no error in spatial inter- 
polation of velocity, the error is only a function of N, the number of time steps per revolution. 
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FIG. 4. Percentage error in the calculation of one revolution of a particle in a variable vorticity flow 
with perfect time differencing. The abscissa is the ratio of the initial radius R to the grid size. The 
ordinate is a measure of the percentage change in the vorticity per unit of grid size. 

must consider a flow where the velocity components vary with the spatial coor- 
dinates nonlinearly. A simple flow was chosen from which the trajectories are still 
circular but where the angular velocity is an exponential function of the radius; 

or 
(15) 

(16) 

The nondimensional constant, c, is the percentage change of rotation rate per unit 
of grid size, As. The error (Eq. (12)) is then a function of both c and As/r, the ratio 

FIG. 5. Initial positions of 13 test particles. The nearshore particles are 2.5 km from the shore boun- 
dary, regardless of grid size. 
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As=lOkm As=5km AS = 2.5 km 

FIG. 6. Test particle positions after one counterclockwise rotation for three grid sizes. The lag of the 
nearshore particles is caused by the particles following the jagged coastline; thus, the lag increases for 
coarse resolution grids. 

of grid size to the radius. The error, plotted as a function of these two parameters in 
Fig. 4, is small both for small values of c and for large values of r/As. 

To test the effects of shores on the accuracy of the method, particle trajectories 
are computed in a circular lake. The motion of 13 test particles is calculated; the 
initial positions of these particles are shown in Fig. 5. In this configuration, particles 
1, 5, 9, and 13 start within 2.5 km of the grid boundary for all three grids. In a solid 
rotation flow using the grid of Fig. 2, these particles could not have exact circular 
paths without crossing the shore boundary. 

Solid rotation for a given grid size is defined as the finite-difference solution 

V. D - ‘V$ = constant, (17) 

where D is defined as depth. This definition results in smoother streamfunction con- 
tours than would be possible by simply evaluating the solution for solid rotation at 
the grid points. After one counterclockwise rotation, the 13 particles are as shown 

6 HOURS 12 HOURS 

16 HOURS 24 HOURS 

FIG. 7. Current patterns resulting from a l-day wind stress of 0.1 Nt m ’ from the west (left). Solid 
lines represent counterclockwise flow; dashed lines indicate clockwise flow. 
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in Fig. 6. Away from the edge of the lake, the solution is nearly exact for all three 
grid sizes (to about 0.01 O/O). However, the particles near the edge of the lake tend to 
lag behind, completing 80% of a complete rotation in the 10 km grid and about 
95 % of a rotation in the 2.5 km grid. This is because the particles follow the 
shoreline rather than a circular course; hence a large discrepancy occurs with the 
more irregular shoreline of the coarse resolution grids. 

Having evaluated the accuracy of the particle trajectory calculations for solid 
rotation, the more difficult problem of estimating the error for wind-driven motion 
will now be discussed. A wind stress pattern typical of a Great Lakes storm was 
used to drive the model described in [4,7 J. This pattern consists of a l-day wind 
stress of 0.1 Nt me2 from the west followed by 4 days with no wind stress. The 
resulting currents show two gyres, one cyclonic and one anticyclonic, which are 
initially aligned with the wind. Because of the earths rotation and the basin 
topography, these gyres propagate around the basin with a 4-day period. The first 
24 h are shown in Fig. 7. This pattern is consistent with the observations of Saylor 
et al. [3]. Since the numerical solution for wind-driven motion will be used in these 
calculations, this is a test of the complete method of calculating particle trajectories 
from currents in a closed basin. 

Figure 8 shows the trajectories of the two particles labelled 1 and 2 in Fig. 5, as 
calculated with grid sizes 10, 5, and 2.5 km. Particle 1, which begins 2.5 km from 
shore, travels downwind with the current, curving north with the shoreline. The 
length of the path depends to a great extent on grid size. For the first 2 days, the 
particle traveled 8 km in the lo-km grid and 16 km in the 2.5-km grid. After 2 days, 
the motion was negligible for all grid sizes because friction had decreased the 
current speed in the shallow water. Particle 2 begins further off-shore in the deep 
water return flow. For the first day, the particle traveled just over 1 km for all grid 
sizes, but the direction of flow for the lo-km grid differs by 45 degrees from the 5- 
and 2.5-km grids. For the next 3 days, the particle moves toward the west and 
northwest as the current direction changes in response to the topographic wave 
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FIG. 8. Particle trajectories for 2 of the 13 test particles. The path length is strongly dependent on 
grid size. The short path length in the IO-km case is caused mainly by an underestimation of the 
currents. 



ACCURACYOFTRAJECTORYCALCULATION 281 

motion set up by the west wind. For the higher resolution cases, the particle ends 
up approximately 4 km from its initial position, but for the IO-km grid it has moved 
only about 1 km. The reason for this is that the currents in the lo-km grid case 
decay too fast. In all of these cases the errors are due to the inaccuracies of the 
current calculations; the errors of the trajectory prediction method discussed here 
were negligible. 

SUMMARY 

The purpose of this paper was to test the numerical accuracy of a method that 
predicts particle trajectories for oil spill cleanup or search and rescue operations. 
The model uses currents derived from the wind stress to calculate particle trajec- 
tories. This paper was motivated by the fact that simple schemes result in particle 
trajectories that are inaccurate due to time stepping errors which, for the first-order 
Euler method, cause an outward drift of particles and spatial interpolation errors 
which can lead to artificial “beaching.” The second-order trapezoidal 
(Crank-Nicholson) method examined here minimizes these problems. It is the sim- 
plest second-order time differencing method which uses only two time levels and 
corrects for particles which beach due to finite-difference errors. 

The accuracy of the method was evaluated by computing the trajectories first 
with a steady solid rotation current pattern and then with time-dependent, wind- 
driven currents. In the solid rotation case, the technique is very accurate for all grid 
sizes except for particles near the shore. Because the paths of these particles deviate 
from pure circles to follow the jagged finite-difference coast, it takes them longer to 
circumnavigate the lake. The magnitude of this error is about 20% when the radius 
was five times the grid size (lo-km grid) and 5 % when the radius was 20 times the 
grid size (2.5-km grid). 

The wind-driven case provides a comparison of the errors in calculating trajec- 
tories with the other major source of error for the lake circulation problem-the 
calculation of the currents from the wind. Offshore, the predicted trajectories for the 
2.5- and 5-km grids compare favorably, and since the currents and particle moving 
schemes are both accurate there, it is reasonable to conclude that these solutions 
are accurate. Nearshore, the distance that particles move increase as grid size 
decreases. While both steps of the model cause an underestimation of nearshore 
speeds, the major errors are due to the current calculation step. 

The original oil spill model that was used on the Great Lakes [ 1 ] utilized a 14- 
km grid of Lake Michigan. The solutions presented here for a lo-km grid (Figs. 6 
and 8) are clearly not very accurate; the most important source of error is the 
calculation of currents from the wind stress. Accordingly, the new oil spill model 
[4] has the capability to use finer grids. Based on Fig. 6, a 5-km grid will be of 
acceptable accuracy for most areas and will slightly underestimate particle speeds 
nearshore. However, the resolution of smaller regions or irregular areas may require 
an even smaller grid size to be accurate. 

5X1,6X/2-3 
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